Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7338, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957156

RESUMO

Autophagosomes are double-membrane vesicles generated intracellularly to encapsulate substrates for lysosomal degradation during autophagy. Phase separated p62 body plays pivotal roles during autophagosome formation, however, the underlying mechanisms are still not fully understood. Here we describe a spatial membrane gathering mode by which p62 body functions in autophagosome formation. Mass spectrometry-based proteomics reveals significant enrichment of vesicle trafficking components within p62 body. Combining cellular experiments and biochemical reconstitution assays, we confirm the gathering of ATG9 and ATG16L1-positive vesicles around p62 body, especially in Atg2ab DKO cells with blocked lipid transfer and vesicle fusion. Interestingly, p62 body also regulates ATG9 and ATG16L vesicle trafficking flux intracellularly. We further determine the lipid contents associated with p62 body via lipidomic profiling. Moreover, with in vitro kinase assay, we uncover the functions of p62 body as a platform to assemble ULK1 complex and invigorate PI3KC3-C1 kinase cascade for PI3P generation. Collectively, our study raises a membrane-based working model for multifaceted p62 body in controlling autophagosome biogenesis, and highlights the interplay between membraneless condensates and membrane vesicles in regulating cellular functions.


Assuntos
Autofagossomos , Autofagia , Autofagossomos/metabolismo , Autofagia/fisiologia , Macroautofagia , Fagossomos/metabolismo , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Lipídeos
2.
Carbohydr Polym ; 311: 120762, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37028879

RESUMO

Multidrug resistance (MDR) which is often related to the overexpression of P-glycoprotein (P-gp) in drug-resistant cancer cells has been a major problem faced by current cancer chemotherapy. Reversing P-gp-related MDR by disrupting tumor redox homeostasis that regulates the expression of P-gp is a promising strategy. In this work, a hyaluronic acid (HA) modified nanoscale cuprous metal-organic complex (HA-CuTT) was developed to reverse P-gp-related MDR via two-way regulated redox dyshomeostasis, which was achieved by both Cu+-catalyzed generation of •OH and disulfide bonds-mediated depletion of glutathione (GSH). In vitro studies reveal that the DOX-loaded complex (HA-CuTT@DOX) has excellent targeting ability to HepG2-ADR cells due to the modification of HA and effectively induces redox dyshomeostasis in HepG2-ADR cells. Moreover, HA-CuTT@DOX can cause mitochondrial damage, decrease ATP level, and downregulate the P-gp expression, thereby leading to the reversal of MDR and the increased drug accumulation in HepG2-ADR cells. Importantly, in vivo experimental results show that it can achieve effective inhibition (89.6 %) of tumor growth in nude mice bearing HepG2-ADR cells. This is the first work to reverse P-gp-related MDR via two-way regulated redox dyshomeostasis based on a HA modified nanoscale cuprous metal-organic complex, providing a new therapeutic paradigm for effective treatment of MDR-related cancer.


Assuntos
Doxorrubicina , Ácido Hialurônico , Humanos , Animais , Camundongos , Ácido Hialurônico/farmacologia , Doxorrubicina/farmacologia , Camundongos Nus , Resistencia a Medicamentos Antineoplásicos , Células MCF-7 , Resistência a Múltiplos Medicamentos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP , Oxirredução
3.
Cell Res ; 32(7): 659-669, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35477997

RESUMO

Biomolecular condensation driven by liquid-liquid phase separation (LLPS) is key to assembly of membraneless organelles in numerous crucial pathways. It is largely unknown how cellular structures or components spatiotemporally regulate LLPS and condensate formation. Here we reveal that cytoskeletal dynamics can control the condensation of p62 bodies comprising the autophagic adaptor p62/SQSTM1 and poly-ubiquitinated cargos. Branched actin networks are associated with p62 bodies and are required for their condensation. Myosin 1D, a branched actin-associated motor protein, drives coalescence of small nanoscale p62 bodies into large micron-scale condensates along the branched actin network. Impairment of actin cytoskeletal networks compromises the condensation of p62 bodies and retards substrate degradation by autophagy in both cellular models and Myosin 1D knockout mice. Coupling of LLPS scaffold to cytoskeleton systems may represent a general mechanism by which cells exert spatiotemporal control over phase condensation processes.


Assuntos
Actinas , Autofagia , Actinas/metabolismo , Animais , Autofagia/fisiologia , Camundongos , Miosinas/metabolismo , Proteína Sequestossoma-1/metabolismo , Ubiquitina/metabolismo
4.
ACS Appl Mater Interfaces ; 13(38): 45916-45923, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34541849

RESUMO

Drop-based microcavity lasers emerged as a promising tool in modern physics investigation and chemical detection owing to their cost-effective fabrication, high luminescence, and sensitive molecule sensing. However, it is of great challenge to achieve highly directional emission along with high quality (Q) factors via traditional droplet self-assembly behavior of the gain medium on a planar substrate. In this work, a single-mode microcavity laser with directional far-field emission is first proposed via droplet self-assembly 3D-curved microcavities, and simultaneously, acetic acid (AcOH) gas sensing is realized. Trichromatic single-mode lasing in 3D-curved microcavities with distinct organic polymer droplets is constructed on silica fibers via a self-assembly procedure. By regulating the curvature of the substrate, mode selection and directional emission of the lasing action are realized. The measured Q-factor of the proposed anisotropic 3D-curved active microcavity is ∼20k. Furthermore, on account of the sensitive responsiveness of liquid organic polymers, single-mode laser sensors can be realized by measuring the shift of their lasing modes on exposure to organic vapor. Benefiting from chemical reaction with rhodamine 6G, the AcOH gas sensor displays a short response time. These results may open new insights into drop-based quasi-3D-anisotropic whispering-gallery-mode microcavities to improve the development of lab-in-a-droplet, ranging from a tuneable microcavity laser to a chemical gas sensor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...